个人总结网 > 地图 > 个人总结 >

二次函数

二次函数知识点总结

时间: 2023-03-02

最新总结: 二次函数知识点回顾。

无论是生活中,还是工作中,我们都有可能需要写个人总结。个人总结就是过去时间做的事的总检查、总评价。每次写个人总结,都是我们思考的绝好时机:有时候,为他人创造价值,也是在为自己创造价值。那么我们在写个人总结时要考虑什么呢?为满足您的需求,小编特地编辑了“最新总结: 二次函数知识点回顾”,希望能为您提供更多的参考。

随着人们文化水平的不断提升,文档被越来越多人所需要,借鉴范文是提升写作技巧的杰出手段。范文的用词精辟,值得我们细细推敲,以下为为大家整理的最新总结: 二次函数知识点回顾,欢迎收藏本网站,继续关注我们的更新!

二次函数概念

一般地,把形如y=ax2+bx+c(其中a、b、c是常数,a≠0,b,c可以为0)的函数叫做二次函数,其中a称为二次项系数,b为一次项系数,c为常数项。x为自变量,y为因变量。等号右边自变量的最高次数是2。二次函数图像是轴对称图形。

注意:“变量”不同于“自变量”,不能说“二次函数是指变量的最高次数为二次的多项式函数”。“未知数”只是一个数(具体值未知,但是只取一个值),“变量”可在实数范围内任意取值。在方程中适用“未知数”的概念(函数方程、微分方程中是未知函数,但不论是未知数还是未知函数,一般都表示一个数或函数——也会遇到特殊情况),但是函数中的字母表示的是变量,意义已经有所不同。从函数的定义也可看出二者的差别,如同函数不等于函数的关系。

二次函数公式大全

二次函数

I.定义与定义表达式

一般地,自变量x和因变量y之间存在如下关系:

y=ax2+bx+c(a,b,c为常数,a≠0)

则称y为x的二次函数。

二次函数表达式的右边通常为二次三项式。

II.二次函数的三种表达式

一般式:y=ax2;+bx+c(a,b,c为常数,a≠0)

顶点式:y=a(x-h)2;+k [抛物线的顶点P(h,k)]

交点式:y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线]

注:在3种形式的互相转化中,有如下关系:

h=-b/2a k=(4ac-b2;)/4a x1,x2=(-b±√b2;-4ac)/2a

III.二次函数的图象

在平面直角坐标系中作出二次函数y=x??的图象,

可以看出,二次函数的图象是一条抛物线。

IV.抛物线的性质

1.抛物线是轴对称图形。对称轴为直线

x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为

P [ -b/2a ,(4ac-b2;)/4a ]。

当-b/2a=0时,P在y轴上;当Δ= b2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;

当a与b异号时(即ab

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b2-4ac>0时,抛物线与x轴有2个交点。

Δ= b2-4ac=0时,抛物线与x轴有1个交点。

Δ= b2-4ac

V.二次函数与一元二次方程

特别地,二次函数(以下称函数)y=ax2;+bx+c,

当y=0时,二次函数为关于x的一元二次方程(以下称方程),

即ax2;+bx+c=0

此时,函数图象与x轴有无交点即方程有无实数根。

函数与x轴交点的横坐标即为方程的根。

本文来源:http://www.676u.com/gerenzongjie/34977.html